
Self-Supervised Learning: A Comprehensive Study

SAIDA Haithem

Course: Deep Learning

Supervised by: Madam MANKOURI Amani

1 Introduction

Self-supervised learning (SSL) has emerged as a transformative paradigm in machine learning,
leveraging unlabeled data to generate supervisory signals through carefully designed pretext
tasks. Unlike traditional supervised learning, which relies heavily on large-scale annotated
datasets, SSL enables models to learn robust and transferable representations from raw data,
significantly reducing the dependence on human labeling.

SSL powers state-of-the-art models across various domains, including natural language process-
ing and computer vision. Models like GPT and BERT, which have revolutionized NLP, and
Vision Transformers (ViTs), which excel in computer vision tasks, owe much of their success
to self-supervised techniques. These models utilize SSL strategies such as predicting masked
tokens or learning from contrastive objectives to achieve remarkable generalization and adapt-
ability.

The rapid growth in data across diverse domains such as computer vision, natural language pro-
cessing, and bioinformatics has highlighted the limitations of supervised approaches in terms of
scalability and applicability. SSL addresses these challenges by utilizing the inherent structure
of data to formulate proxy objectives that guide the learning process. Tasks such as predicting
masked tokens, solving jigsaw puzzles, or contrastive learning have become popular techniques
within this paradigm, demonstrating remarkable performance across various downstream tasks.

This report aims to provide a comprehensive study of self-supervised learning, including its
problem formulation, methodologies, and practical applications. Specifically, we delve into the
following aspects:

• A detailed description of the problem and an overview of the dataset used in our study.

• Methodologies and approaches employed in SSL, with a focus on pretext tasks and their
formulation.

• Description of the model architecture, including key components and design choices.

• Implementation details highlighting the tools, frameworks, and resources utilized.

• Experimental results, analysis, and discussions on the efficacy of SSL in the given context.

By exploring these topics, this report aims to contribute to a deeper understanding of self-
supervised learning and its potential to redefine the landscape of machine learning in resource-
constrained and data-intensive scenarios.



2 Problem Description and Dataset Overview

2.1 Problem Description

Self-supervised learning (SSL) tackles one of the most pressing challenges in machine learning:
the scarcity of labeled data. Annotating data is often labor-intensive, costly, and infeasible
for large-scale datasets or specialized domains such as healthcare and scientific research. SSL
leverages the vast quantities of unlabeled data available, allowing models to generate pseudo-
labels through pretext tasks. By solving these pretext tasks, models learn generalizable and
robust representations that can be fine-tuned for downstream applications.

In domains like computer vision, SSL reduces dependency on labeled datasets by exploiting
inherent patterns in the data, such as spatial context or temporal coherence. Similarly, in
natural language processing (NLP), tasks such as predicting missing words or reordering shuf-
fled sentences demonstrate SSL’s ability to learn meaningful linguistic representations. These
attributes make SSL a critical approach for scaling machine learning to real-world problems.

Figure 1: Self-supervised learning in computer vision using image data.

2.2 Technique Overview

Self-supervised learning follows a structured methodology consisting of the following steps:

• Pretext Task Design: Define tasks that do not require labels, such as image rotation
prediction, colorization, or contrastive learning for image embeddings.

• Representation Learning: Train the model to solve the pretext task, forcing it to
extract useful patterns and features from the data.

• Fine-Tuning: Transfer the learned representations to a downstream task with limited
labeled data.

2



Figure 2: Pretext task example in SSL.

2.3 Advantages and Limitations

Advantages:

• Reduced Dependency on Labels: SSL reduces the need for costly and time-consuming
data annotation.

• Generalization: Models learn robust and transferable representations applicable across
multiple domains.

• Scalability: By leveraging abundant unlabeled data, SSL can scale to vast datasets.

Limitations:

• Task Design Sensitivity: The choice of pretext tasks significantly affects the quality
of learned representations.

• Computational Cost: SSL training can be resource-intensive, particularly for con-
trastive learning methods.

• Domain-Specific Challenges: Some pretext tasks may not generalize well to specialized
domains.

2.4 Real-World Examples

Self-supervised learning has demonstrated remarkable success in several real-world applications:

• Natural Language Processing: Models like BERT, GPT, and T5 utilize self-supervised
techniques such as masked token prediction and causal language modeling, enabling state-
of-the-art results in tasks like translation, summarization, and question answering.

• Computer Vision: Approaches like SimCLR, BYOL, and MAE use self-supervised
learning to train models for tasks such as image recognition, segmentation, and object
detection, even with limited labeled data.

3



• Autonomous Vehicles: SSL is employed in systems like Tesla’s vision models and
Waymo’s autonomous driving pipelines to process sensor data, enabling tasks like object
detection and trajectory prediction.

• Recommendation Systems: Platforms like YouTube and TikTok use SSL to model
user preferences and improve content personalization without requiring explicit user feed-
back.

2.5 Dataset Overview

For this study, we utilized the Tiny ImageNet dataset, a subset of the ImageNet dataset, which
consists of 200 classes of images, each containing a limited number of samples.

The dataset includes annotated images of various objects across multiple domains, making it a
benchmark dataset for testing machine learning algorithms, particularly in self-supervised and
semi-supervised learning tasks. The dataset is publicly available and can be accessed at Tiny
ImageNet Dataset.

Key characteristics of the dataset include:

• Size: 100,000 training images, 10,000 validation images, and 10,000 test images.

• Data Type: RGB images of size 64x64 pixels.

• Domains: Natural scenes and objects such as animals, vehicles, and household items.

Figure 3: Sample images from the Tiny ImageNet dataset.

4

https://www.kaggle.com/datasets/akash2sharma/tiny-imagenet
https://www.kaggle.com/datasets/akash2sharma/tiny-imagenet


3 Methodology and Approaches

3.1 General Approach

In real-world applications, practitioners often utilize pretrained models that have been trained
using self-supervised learning techniques on large-scale datasets. These pretrained models are
then fine-tuned for specific downstream tasks, leveraging the learned representations to achieve
high performance with minimal labeled data.

In this study, we sought to implement an example of self-supervised learning from scratch to
provide a detailed explanation of the process. However, after experimentation, we opted for
a simpler approach by employing a feature extractor as the backbone of our pipeline. This
decision allowed us to focus on showcasing the pretext task while maintaining computational
feasibility.

3.2 Pretext Task: Image Rotation Prediction

The chosen pretext task involved training the model to classify the degree of rotation applied
to images. Specifically, images were randomly rotated by one of four angles: 0°, 90°, 180°, or
270°. The model was tasked with predicting the correct rotation class, enabling it to learn
spatial and structural patterns inherent in the data.

Figure 4: Overview of the pretext task data.

5



3.3 Data Augmentation and Feature Learning

This approach relies heavily on feature learning, as the model’s success depends on its ability
to extract meaningful representations from unlabeled data. To enhance feature learning, a data
augmentation pipeline was implemented using techniques such as horizontal flipping, random
zooming, and contrast adjustment.

3.4 Downstream Task: Image Classification

The downstream task for this study involved predicting the class of images belonging to two spe-
cific labels from the dataset: Duck and Fish. After the model was trained on the pretext task,
the learned features were utilized to fine-tune a simple classifier for this binary classification
problem.

This task demonstrates the ability of self-supervised learning to transfer knowledge from an un-
supervised pretext task to a supervised downstream task, reducing the dependency on extensive
labeled datasets. The binary classification approach allowed us to evaluate the effectiveness of
the learned representations.

Figure 5: Example images of the two labels (Duck and Fish) used in the downstream task.

6



4 Model Architecture Description

4.1 Neural Network Architecture

The model utilizes a feature extractor to learn general-purpose representations during the self-
supervised pretext task. The architecture consists of the following components:

• Input Preprocessing: A data augmentation pipeline is employed to enhance robustness
to input variability. The pipeline includes:

– Rescaling pixel values to the range [0, 1].

– Random horizontal flipping.

– Random zooming (10%).

– Random contrast adjustments (10%).

• Feature Extractor: The backbone network, minus its top layer, is designed to capture
general-purpose features. During the pretext task, it learns meaningful representations
without labels. After testing multiple convolution layers, MobileNetV2 was found to de-
liver the best results. Feature extraction is crucial in self-supervised learning, as it enables
the model to learn robust, transferable features that can be fine-tuned for downstream
tasks, even with limited labeled data.

• Feature Aggregation and Classification: The output of the feature extractor is
processed through:

– A global average pooling layer to aggregate spatial information.

– A dense layer with 128 units and ReLU activation to add non-linearity.

– A final dense layer with softmax activation for downstream classification tasks.

4.2 Loss Function

The model uses sparse categorical crossentropy during fine-tuning to optimize the map-
ping of general representations to class labels. The loss function is defined as:

L = − 1

N

N∑
i=1

log (pi,yi),

where:

• N is the number of samples in a batch.

• pi,yi is the predicted probability for the true class yi of the i-th sample.

• yi is the ground truth class index for the i-th sample.

This loss function is particularly suited for classification tasks where the labels are provided as
integers, and it ensures the network learns a probability distribution over the class predictions.

7



5 Implementation Details

5.1 Libraries and Frameworks

The implementation of the model relies on the following tools and libraries:

• TensorFlow: Used for building and training the deep learning model, including the
feature extractor, data augmentation layers, and custom training loops.

• Keras API: Provided a high-level interface for defining and compiling the model, man-
aging callbacks, and facilitating training.

• NumPy: Utilized for efficient numerical operations and data manipulation.

• Matplotlib and Seaborn: Used for visualizing training progress, loss curves, and eval-
uation metrics.

5.2 Training and Evaluation

The training process and evaluation of the model were designed to ensure robust learning and
reliable performance assessment:

• Hyperparameters:

– Learning Rate: The initial learning rate was set to 0.001 and adjusted dynamically
using a learning rate scheduler.

– Batch Size: A batch size of 32 was used to balance memory constraints and conver-
gence speed.

– Epochs: The model was trained for up to 100 epochs on the pretext task and up to
40 epochs on the downstream task. Early stopping was applied in the pretext task
phase, using validation accuracy as the stopping criterion to prevent overfitting.

• Data Augmentation: A comprehensive augmentation pipeline was implemented to
ensure that the model is learning to generalize across diverse input variations.

• Evaluation Metrics:

– Accuracy: Used to assess the model’s performance in both pretext and downstream
tasks.

– Validation Loss: Monitored to ensure the model was not overfitting and to guide
early stopping.

8



5.3 Training Strategy

The following strategies are employed to optimize the model:

• Early Stopping: Halts training when validation accuracy stagnates, ensuring the model
does not overfit. Restores the best-performing weights.

• Learning Rate Scheduling: Dynamically reduces the learning rate by a factor of 0.5
if validation loss plateaus, promoting stable convergence.

• Optimizer: The Adam optimizer is used for its adaptive learning rate and efficient
handling of sparse gradients.

5.4 Hardware and Training Environment

The model was trained using Google Colab, a cloud-based platform that provides access to
GPU-accelerated computation. The following specifications were used:

• GPU: NVIDIA Tesla T4 with 16 GB VRAM.

• Python Version: 3.9.

Google Colab enabled convenient experimentation, though the resource limitations posed chal-
lenges to the training process.

9



6 Results and Analysis

6.1 Overview of Experimental Results

The experiments employed an iterative and experimental approach. Initially, the model was
trained from scratch without any pre-trained backbone. However, this approach failed to deliver
satisfactory results due to poor convergence and limited generalization. To address this issue,
MobileNetV2 was introduced as the feature extractor in the pretext task. Figures 6 and 7
illustrate the performance comparison between the model trained from scratch and the one
utilizing MobileNetV2.

6.2 Pretext Task Performance

6.2.1 Performance of Model Trained from Scratch

The model trained from scratch encountered significant challenges in optimization. As shown
in Figure 6, the training and validation accuracy remained low, while the loss curves exhibited
considerable instability. These issues underscored the limitations of training without a robust
backbone, resulting in poor generalization.

Figure 6: Training and validation accuracy and loss for the model trained from scratch.

6.2.2 Performance with MobileNetV2 Feature Extractor

The introduction of MobileNetV2 as the backbone dramatically improved the model’s perfor-
mance. Figure 7 highlights the increase in accuracy and convergence of the loss curves. This
improvement demonstrated MobileNetV2’s capability to capture robust feature representations,
leading to better optimization and generalization.

10



Figure 7: Training and validation accuracy and loss for the model using MobileNetV2 as the
feature extractor.

6.3 Downstream Task Performance

With MobileNetV2 established as the backbone, the model was fine-tuned for a downstream
task where the number of output classes was reduced from four to two. The final layer of
the model was reconfigured to accommodate this change. Fine-tuning on the selected classes
delivered robust results, as depicted in Figure 8. The model achieved high accuracy with stable
loss convergence, showcasing its ability to generalize effectively in the downstream task.

Figure 8: Training and validation accuracy and loss for the fine-tuned model in the downstream
task (2 classes).

11



6.4 Analysis and Insights

The experimental findings highlight several key insights:

• Importance of Backbone Selection: Training a model from scratch resulted in poor
performance, emphasizing the necessity of employing a robust feature extractor like Mo-
bileNetV2.

• Effectiveness of MobileNetV2: Incorporating MobileNetV2 significantly enhanced
the pretext task performance, enabling the model to learn richer and more meaningful
feature representations.

• Fine-Tuning Success: The successful adaptation of the model for the downstream task
demonstrated its flexibility in leveraging learned features for specific applications.

• Strong Performance Metrics: The near-perfect training accuracy, coupled with stable
validation performance, reflected the model’s capability to excel in the downstream task.

• Generalization Challenges: Minor fluctuations in validation accuracy and loss pointed
to potential overfitting or instability, suggesting opportunities for further improvements
through regularization or advanced fine-tuning strategies.

6.5 Challenges and Solutions

The primary challenge was achieving satisfactory performance when training the model from
scratch. This was addressed by introducing MobileNetV2 as a strong feature extraction back-
bone, which significantly improved the model’s capability. Additionally, fine-tuning for the
downstream task required reconfiguration of the model’s architecture, specifically the final
layer, to adapt to the reduced number of output classes. This adaptation, combined with
optimized parameter tuning, successfully overcame the challenges.

12



Conclusion

In conclusion, self-supervised learning (SSL) has emerged as a transformative and highly effi-
cient technique in the field of machine learning, particularly for use cases where large amounts
of data are unlabeled or partially labeled. One of the primary strengths of SSL is its ability to
leverage vast quantities of unlabeled data, which are more readily available compared to labeled
data. The core of SSL lies in the feature extractor, a critical component that is responsible for
learning meaningful and rich representations from the input data. By using a self-supervised
approach, the model can generate informative features without the need for explicit supervision
or annotated labels. This makes it an attractive alternative to traditional supervised learning,
which often requires expensive and time-consuming human labeling efforts.

The ability of SSL to address the challenge of unlabeled data is one of the most significant
contributions of this technique. It alleviates the need for large labeled datasets, which are
often scarce, especially in domains such as medical imaging, natural language processing, and
autonomous driving. As a result, SSL enables the creation of robust models that can generalize
well across a variety of tasks and domains, even when only limited labeled data is available.

Moreover, SSL has become a foundational building block for many of the state-of-the-art models
currently used in AI research and real-world applications. From powerful natural language
processing models like GPT and BERT to advanced computer vision systems such as CLIP and
SimCLR, self-supervised learning has been integral in pushing the boundaries of what AI can
achieve. These models demonstrate the remarkable ability of SSL to capture intricate patterns
and representations from data, often surpassing traditional supervised learning approaches in
terms of efficiency and accuracy.

The continuous growth in the adoption of SSL is also a testament to its scalability and flexibility.
With the ability to scale to large datasets, self-supervised learning has proven effective in
various domains, including speech recognition, video analysis, and even robotics. As AI systems
continue to evolve, SSL will undoubtedly remain a critical component, providing a pathway for
creating intelligent systems capable of handling complex tasks with minimal reliance on labeled
data.

In summary, self-supervised learning represents a paradigm shift in the way machine learning
models are trained and applied. By focusing on the feature extractor and utilizing the power
of unlabeled data, SSL solves the persistent problem of limited labeled data while powering
state-of-the-art models that are reshaping industries and driving innovation across a wide range
of fields. As research and development in this area continue to progress, SSL is poised to play
an even more significant role in the future of AI.

13



References

[1] YouTube, “Self-Supervised Learning Overview,” available at: https://www.youtube.

com/watch?v=CG9xbAfq6wI.

[2] Neptune.ai, “Self-Supervised Learning: What It Is and How It Works,” avail-
able at: https://neptune.ai/blog/self-supervised-learning#:~:text=

Self%2Dsupervised%20learning%20is%20a,as%20predictive%20or%20pretext%

20learning..

[3] V7 Labs, “The Ultimate Guide to Self-Supervised Learning,” available at: https://www.
v7labs.com/blog/self-supervised-learning-guide.

[4] Shelf.io, “Self-Supervised Learning Harnesses the Power of
Unlabeled Data,” available at: https://shelf.io/blog/

self-supervised-learning-harnesses-the-power-of-unlabeled-data/.

[5] Kaggle, “Tiny ImageNet,” available at: https://www.kaggle.com/datasets/

akash2sharma/tiny-imagenet.

[6] Tsang, S., “Review: SimCLR – A Simple Framework for Contrastive Learning of Visual
Representations,” Medium, available at: https://sh-tsang.medium.com/5de42ba0bc66.

[7] AI Multiple, “Self-Supervised Learning,” available at: https://research.aimultiple.

com/self-supervised-learning/#what-are-its-limitations.

14

https://www.youtube.com/watch?v=CG9xbAfq6wI
https://www.youtube.com/watch?v=CG9xbAfq6wI
https://neptune.ai/blog/self-supervised-learning#:~:text=Self%2Dsupervised%20learning%20is%20a,as%20predictive%20or%20pretext%20learning.
https://neptune.ai/blog/self-supervised-learning#:~:text=Self%2Dsupervised%20learning%20is%20a,as%20predictive%20or%20pretext%20learning.
https://neptune.ai/blog/self-supervised-learning#:~:text=Self%2Dsupervised%20learning%20is%20a,as%20predictive%20or%20pretext%20learning.
https://www.v7labs.com/blog/self-supervised-learning-guide
https://www.v7labs.com/blog/self-supervised-learning-guide
https://shelf.io/blog/self-supervised-learning-harnesses-the-power-of-unlabeled-data/
https://shelf.io/blog/self-supervised-learning-harnesses-the-power-of-unlabeled-data/
https://www.kaggle.com/datasets/akash2sharma/tiny-imagenet
https://www.kaggle.com/datasets/akash2sharma/tiny-imagenet
https://sh-tsang.medium.com/5de42ba0bc66
https://research.aimultiple.com/self-supervised-learning/#what-are-its-limitations
https://research.aimultiple.com/self-supervised-learning/#what-are-its-limitations

	Introduction
	Problem Description and Dataset Overview
	Problem Description
	Technique Overview
	Advantages and Limitations
	Real-World Examples
	Dataset Overview

	Methodology and Approaches
	General Approach
	Pretext Task: Image Rotation Prediction
	Data Augmentation and Feature Learning
	Downstream Task: Image Classification

	Model Architecture Description
	Neural Network Architecture
	Loss Function

	Implementation Details
	Libraries and Frameworks
	Training and Evaluation
	Training Strategy
	Hardware and Training Environment

	Results and Analysis
	Overview of Experimental Results
	Pretext Task Performance
	Performance of Model Trained from Scratch
	Performance with MobileNetV2 Feature Extractor

	Downstream Task Performance
	Analysis and Insights
	Challenges and Solutions


